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ABSTRACT
Geo-fencing is a location based service that allows sending of mes-

sages to users who enter/exit a speci�ed geographical area, known

as a geo-fence. Today, it has become one of the popular location

based mobile marketing strategies. However, the process of design-

ing geo-fences is presently manual, i.e. a retailer must specify the

location and the radius of area around it to setup the geo-fences.

Moreover, this process does not consider the user’s preference

towards the targeted product/service and thus, can compromise

his/her experience of the app that sends these communications. We

attempt to solve this problem by presenting a novel end-to-end

system for automated design of a�nity based smart geo-fences.

A�nity towards a product/service refers to the user’s interest in a

product/service. Our unique formulation to estimate a�nity, using

historical app usage data, is sensitive to a user’s location and thus,

the a�nity is termed as location sensitive product a�nity (LSPA).

The geo-fence logic tries to capture contiguous groups of locations

where the a�nity high. Experiments on real world e-commerce

dataset reveals that geo-fences designed by our approach performs

signi�cantly better at accurately targeting the users who are inter-

ested in a product. We thus show that, using historical app usage

data, geo-fences can be designed in an automated manner and can

help enterprises target interested users with better accuracy as

compared to the present industry practices.

CCS CONCEPTS
• Information systems→Location based services;Geographic
information systems;Mobile information processing systems; Clus-

tering; • Human-centered computing → Ubiquitous and mobile
computing;

KEYWORDS
Geo-fencing, Spatial Data Mining

∗
Work done when the author was a part of Adobe Research

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSPATIAL’17, Los Angeles Area, CA, USA
© 2017 ACM. 978-1-4503-5490-5/17/11. . . $15.00

DOI: 10.1145/3139958.3140059

ACM Reference format:
Ankur Garg, Sunav Choudhary, Payal Bajaj, Sweta Agrawal, Abhishek Kedia,

and Shubham Agrawal. 2017. Smart Geo-fencing with Location Sensitive

Product A�nity. In Proceedings of SIGSPATIAL’17, Los Angeles Area, CA,
USA, November 7–10, 2017, 10 pages.

DOI: 10.1145/3139958.3140059

1 INTRODUCTION
Modern day mobile devices can provide a lot of contextual infor-

mation of a user like current location, physical state, temperature,

humidity, etc. that can aid a multitude of use cases. In the industry,

location based marketing has become increasingly important due to

the expanding mobile user base. In this form of marketing, a brand

targets it’s mobile app users with an o�er for a product/service,

based on their geographical location. Geo-fencing is a location

based marketing technique that allows brand marketers to push

o�ers through in-app messages, location based coupons, real-time

updates, etc. in speci�c geographical areas called geo-fences. Geo-

fencing consists of two broad stages. The �rst stage is geo-fence
design which comprises of a selection of key locations within an

area of interest and de�nition of virtual boundaries (known as

geo-fences) enclosing these locations. The second stage is real-time
detection which is about geo-fence deployment and testing for the

presence of mobile devices inside the deployed set of geo-fences in

real-time. The real-time detection problem has seen active interest

from the research community [16, 37], but the geo-fence design

problem has not been addressed in depth. We only focus on the

geo-fence design problem in this paper.

For location based marketing, the geo-fence design stage requires

a lot of manual e�ort on the marketer’s end, since he/she has to un-
derstand the usage patterns and user preferences in the area of interest

by analyzing aggregated data. Thus, the marketer runs the risk of

detecting only global patterns while missing out on individual and

segment level preference patterns. Geo-fences so designed would

lack personalization, lead to unnecessary targeting and degrade the

user experience o�ered by the brand’s app. Frequent unnecessary

targeting and non-personalized experiences could encourage the

user to opt out or uninstall the app altogether, both of which are

highly undesirable from the brand’s perspective. The paper focuses

on addressing these challenges of geo-fence design by presenting

an automated approach to design smart geo-fences based on location
dependent user a�nity towards a product/service. The geo-fences

are termed smart since they are sensitive to user a�nity.

In [3, 8, 29, 34], the authors have shown that a user’s product

browsing behavior coupled with his present location gives a strong

indication of his interest in that product at that location. In the
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Figure 1: Distinct Products viewed by Users

Table 1: Number of Distinct Stay points visited by users

# Distinct Stay Points # Users (out of 4000)

<10 3966

10-25 29

>25 5

sequel, we refer to both products and services as products. We term

this user interest in a product at a particular location, as location
sensitive product a�nity (LSPA). It is important to note here that

the a�nity captures a long-term interest of the user towards a

product and does not consider the temporal nature of such interests

with respect to the time of day. Estimating the a�nity of a user

at di�erent locations towards a product is inherently complex due

to sparsity in the location based data collected [3]. By sparsity

we mean that, users generally browse a small number of products

(Figure 1) and visit only a small number of locations (Table 1).

Thus, we propose a formulation to estimate this a�nity for a large

number of products and at various locations through a sequential

utilization of pair-wise product-product, user-user, and semantic

location-location similarities to remove most of the sparsity before

the a�nity based geo-fence design step. Location semantics refers to

the distribution of types of places in a small area around a particular

location. We then identify segments of users having similar a�nities

over the area in which the geo-fences are to be designed and propose

a systematic method to this design problem. The method tries to

capture locations with high user a�nity towards the product and

thus, the resulting geo-fences are personalized to each user segment.

The main contributions of the paper can be summarized as fol-

lows:

(1) We design a novel end-to-end system for automated design of

a�nity based smart geo-fences with several desirable proper-

ties. Firstly, the system generates geo-fences that are both prod-

uct speci�c and personalized to user segments for improved

targeting. Secondly, dependence on and collection of data is lim-

ited to locations where users have browsed for products with

strict adherence to location privacy policies [9, 22]. Lastly, the

number and size of geo-fences designed are alterable to achieve

good scalability of the location based targeting system using

these geo-fences. We demonstrate the superior performance

of our system, compared to the current industry practice of

manual geo-fence design by domain experts, on a real-world

aggregated e-commerce dataset.

(2) We model the latent location sensitivity in a user’s a�nity

towards browsing for various products. We experimentally

demonstrate that ignoring location sensitivity in user a�nity

modeling degrades the quality of the designed geo-fences. This

location semantics based latent sensitivity model is a major

contributor to the superior quality of geo-fences designed by

our system.

(3) We mitigate the extreme sparsity problem that is typical in lo-

cation based datasets (see Figure 1 and Table 1). Our three-step

user a�nity modeling approach sequentially utilizes pair-wise

product-product, user-user, and semantic location-location sim-

ilarities to remove most of the sparsity before the a�nity based

geo-fence design step. We demonstrate that without such miti-

gation of the extreme sparsity in the a�nity estimation process,

the geo-fence design method performs poorly. This is true of

both our approach and other a�nity estimation approaches

like collaborative �ltering.

The rest of the paper is organized as follows. Section 2 brie�y

presents the nature of the dataset and describes the problem ad-

dressed in the paper. Sections 3 and 4 develop the solution approach

in detail, respectively describing the a�nity model and the user

segment based geo-fence design. Section 5 describes the experimen-

tal setup and results. Section 6 describes prior art and Section 7

concludes the paper.

2 PROBLEM DESCRIPTION
The nature of the dataset is an important aspect towards under-

standing both the problem at hand and the subsequent solution

approach. In the �rst half of this section, we explain the nature

of the dataset and the preprocessing applied to it with full details

deferred to Section 5. In the second half of this section, we give a

concrete de�nition of our problem and an overview of the solution

approach.

2.1 Nature of Dataset
Our dataset consists of aggregated usage data from e-commerce

retailers’ mobile application. This data contains logs of all interac-

tions that the users have with these mobile applications. Out of all

possible interactions, we are only interested in the ones where the

users browse a product. Additionally, for each browsing activity

done by the user, his location is also recorded in the form of GPS

coordinates (<latitude, longitude> tuple). E-commerce retailers gen-

erally o�er a range of related products. The set of these products

are organized in a multi-level hierarchy.

2.2 Preprocessing
Here we give some preliminary information that will be needed

to understand the rest of the paper. The �rst one relates to our

notion of location. As pointed by [15], the number of di�erent GPS

points can become very large and they seem to have little semantic

meaning. To counter these problems, they introduce the concept of

stay point. A stay point is de�ned as a geographical region where all

the locations, recorded for a user lie within a certain radius. There

is also a time duration threshold, within which all the locations

need to be recorded, for them to be a part of the same stay point.

In our case, we use the radius of 100 meters and the time duration
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Figure 2: Pictorial Representation of the set of all stay points
L (blue circles and red triangles), grid squares in area of in-
terest G, and stay points outside the area of interest L′ (blue
circles).

of 5 minutes. This helps to capture a small region where the user

has stayed for a while and carries a semantic meaning. The stay

point is represented by the mean of GPS coordinates that lie inside

it and the location semantics of the stay point models the types of

places in the area. In our solution, we assign a single stay point

for all consecutive transactions, of a user, that occur within a �xed

time duration and the recorded GPS coordinates lie inside a �xed

radius. All future references to location in this paper mean the stay

point assigned to each GPS coordinate in our database, using the

stay point detection algorithm in [15].

2.3 Problem De�nition
We de�ne the set L, which is the set of all stay points that has been

detected in the dataset (blue circles and red triangles in Figure 2).

In the current geo-fencing work�ow, the marketer decides an area

of interest, like a part of the city, in which the o�er for a particular

product needs to be promoted; identi�es key locations in that area

and marks a circular region around each one of them as geo-fences.

This is done in order to attract users’ attention towards that product

and evoke response to the o�er in the form of browsing that product

and/or purchasing it. We consider this area as a grid divided into

smaller grid squares (dotted green squares in Figure 2). The size

of the grid squares is taken in such a way that it is very small in

comparison the whole grid and we can assume the a�nity to remain

constant within a grid square. Let G be the set of grid squares in

the area of interest andM(д) where д ∈ G is a set of all locations

l ∈ L that lie inside the grid square д. It is important to note that,

by de�ning the area of interest, we do not mean that the dataset

also needs to be constrained to browsing activities inside that area.

For disambiguation, we also de�ne a set L′ (set of blue circles in

Figure 2) containing all locations not belonging to any grid square

in G.

Further, let U represent the set of users and P be the set of

products that the e-commerce retailer provides. Then for each pair

(u,p) ∈ U × P, the usage logs consists of the values B(u,p, l) =
browse_cnt where browse_cnt represents the number of times the

user u browsed the product p at location l ∈ L. B(u,p, l) = 0 if the

u has not browsed p at that l . In our dataset, products are arranged

in a 3-level hierarchy where each product can be expressed in the

form of a 3-tuple <category, sub-category, vertical>. As an example,

the taxonomy for Orange Juice can be <Food, Juices, Orange Juice>

Usage
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Figure 3: Solution Framework

The main problem that we attempt to solve in this paper can thus,

be summarized as: How to algorithmically design smart geo-fences,
in the area of interest, to improve the response of users to o�ers sent
for a particular product?

2.4 Overview
Figure 3 gives the overview of our solution with more detailed

descriptions in Sections 3 and 4. Our solution has two major com-

ponents:

• A�nity Model: Precise knowledge of a user’s product and loca-

tion speci�c a�nity is useful to design high quality geo-fences.

However, a�nities are not explicitly observable and need to be

inferred from the data at hand. The task is further complicated by

the extreme sparsity problem in the dataset which has its roots in

the tendency of users to browse only some available products and

that too at few locations (see Figure 1 and Table 1). To e�ectively

estimate a�nities and mitigate the extreme sparsity problem,

we present our a�nity modeling approach in Section 3. We rely

on utilizing three types of latent similarities in the dataset in a

sequential manner (viz. product-product, user-user, and semantic

location-location similarities) to estimate a�nity values for users

towards di�erent products at all grid squares inside the area of

interest. The a�nity obtained after employing this three step

approach is what we term as Location Sensitive Product A�nity
(LSPA). The experiments in Section 5 demonstrate that all of

these latent similarities improve the quality of geo-fencing.

• Geo-fence Design: The second component is responsible for de-

signing geo-fences for a speci�c product that the marketer wants

to target to his users. In existing systems, a single set of geo-

fences are designed for a speci�c product, i.e. same geo-fences

for all users. We introduce the aspect of personalization in the

geo-fence design by �rst identifying a small number of user seg-

ments. Users belonging to the same segment have similar a�nity

values towards that product at all the grid squares inside the

area of interest. Afterwards, we design geo-fences for each of
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the identi�ed user segments such that it captures the areas of

high a�nity for users in that segment. Thus, for a given product,

we get a set of user segments and for each user segment, we get

a set of geo-fences as the output from our approach.

3 AFFINITY MODEL
3.1 Product-Product Similarity based A�nity
It is reasonable to expect that two similar products would command

similar a�nities from a typical user at most locations. Indeed, in

the context of recommender systems, a high preference towards

a product has been used as a proxy to estimate interest in other

related products [32]. We capture this e�ect by a custom metric

simP (p,p
′) that measures similarity between products p,p′ ∈ P

with multi-level taxonomy information. Thereafter, we use this

custom similarity measure to de�ne a function AI(u,p, l) ∈ [0, 1]
over all triplets (u,p, l) ∈ U × P × L, and designate it as the

intrinsic a�nity of useru towards productp at location l . Intuitively,

AI(u,p, l) helps in estimating a�nity values at 3-tuples (u,p, l)
where B(u,p, l) = 0 by utilizing information from 3-tuples (u,p′, l)
where B(u,p′, l) , 0.

The construction of simP (·, ·) that follows is inspired from the

product taxonomy information in the dataset and item-item sim-

ilarity models [28]. Each product admits a 3-level taxonomy con-

sisting of category, sub-category, and vertical. Let us respectively

denote by C, S andV , the sets of categories, sub-categories and

verticals in the dataset. Further, for any product p ∈ P, let Cat(p),
sCat(p) and Vert(p) respectively denote the category, the subcat-

egory, and the vertical for p. We de�ne matrices BP ∈ Z
|P |×|U |
+ ,

B
C
∈ [0, 1] |C |×|U | , B

SC
∈ [0, 1] |S |×|U | and B

V
∈ [0, 1] |V |×|U | as

BP(p,u) ,
∑
l ∈L

B(u,p, l), ∀(p,u) ∈ P ×U, (1a)

B
C
(c,u) ,

∑
p :Cat(p)=c

BP(p,u)∑
c ′∈C

∑
p :Cat(p)=c ′

BP(p,u)
, ∀(c,u) ∈ C ×U, (1b)

B
SC
(s,u) ,

∑
p :sCat(p)=s

BP(p,u)∑
s ′∈S

∑
p :sCat(p)=s ′

BP(p,u)
, ∀(s,u) ∈ S ×U, (1c)

B
V
(v,u) ,

∑
p :Vert(p)=v

BP(p,u)∑
v ′∈V

∑
p :Vert(p)=v ′

BP(p,u)
, ∀(v,u) ∈ V ×U, (1d)

whereB(u,p, l) denotes the browse count as described in Section 2.3.

We note that, by de�nition, the summation operator equivalence∑
p∈P

≡
∑
c ′∈C

∑
p :Cat(p)=c ′

≡
∑
s ′∈S

∑
p :sCat(p)=s ′

≡
∑
v ′∈V

∑
p :Vert(p)=v ′

is true. Intuitively, B
C
(:,u) represents a vector of browsing inten-

sity for the user u that is aggregated across all locations in L and

normalized w.r.t. categories in C. Analogous intuitions are true for

both B
SC
(:,u) and B

V
(:,u). Note that we have used the ‘:’ symbol

according to the indexing notation employed by MATLAB
r

. We

now de�ne simP (p,p
′) between any two products p,p′ ∈ P as a

weighted average of cosine similarities

simP

(
p,p′

)
, wC · simcos

(
B

C

(
Cat(p), :

)
,B

C

(
Cat

(
p′

)
, :
) )

+wSC · simcos

(
B

SC

(
sCat(p), :

)
,B

SC

(
sCat

(
p′

)
, :
) )

+wV · simcos

(
B

V

(
Vert(p), :

)
,B

V

(
Vert

(
p′

)
, :
) )
,

(2)

where simcos(·, ·) denotes the cosine similarity function between

two equal length vectors and weights wC, wSC and wV are non-

negative and chosen to satisfy wC +wSC +wV = 1.

Finally, we de�ne the intrinsic a�nity function as the weighted

average

AI(u,p, l) ,
∑
p′∈P

(
simP (p,p

′)∑
p′′∈P

simP

(
p,p′′

) ) · ( B(u,p′, l)∑
p′′∈P

B
(
u,p′′, l

) ) . (3)

3.2 User-User Similarity based A�nity
Prior work in friend recommendation [36] and many other recom-

mendation systems [26] suggests that large sets of users exhibit sim-

ilarities in their behavioral preferences and this phenomenon could

be utilized by various recommendation systems to improve predic-

tion accuracy with limited training data. Analogous to Section 3.1,

we will capture the similarity between users u,u ′ ∈ U with a cus-

tom metric simU (u,u
′) and use this similarity measure to de�ne a

function AU(u,p, l) ∈ [0, 1] over all triplets (u,p, l) ∈ U × P × L
that we term as the user similarity based a�nity of user u towards

product p at location l . Intuitively, AU(u,p, l) helps in estimating

a�nity values at 3-tuples (u,p, l) where B(u,p, l) = 0 by utilizing

information from 3-tuples (u ′,p, l) where B(u ′,p, l) , 0.

Similarity of user preferences is further connected to overlap

similarity in frequented locations [15, 33]. Prior to constructing

simU (·, ·), we model this location based aspect of user similarity

with semantic representations (see [33]) for each location as com-

puted by the Google Places API [12]. Let Sem(l) ∈ RM+ denote the

semantic vector for location l ∈ L, where M types of places have

been identi�ed. Intuitively, Sem(l) represents a distribution over

the M types of places, constructed from places that are geograph-

ically close to l . We illustrate this with an example. Suppose that

we have M = 5 types of places in our dataset, viz. restaurant, hotel,

hospital, bank, and place of worship. Further, assume that there

are 10 places with identi�able types that are close to a location l
of which 7 are restaurants, 2 are hotels and 1 is a bank. Then we

would have Sem(l) = (0.7, 0.2, 0.0, 0.1, 0.0). The actual length of

Sem(l) obtained from Google Places API [12] is M = 100. We now

de�ne the semantic similarity function simL(l , l
′) over all l , l ′ ∈ L

as

simL

(
l , l ′

)
, simcos

(
Sem(l), Sem

(
l ′
) )
. (4)

Next, we de�ne a hierarchical structure on elements of L to

inform the construction of simU (·, ·). We draw on the approach

taken in [15] where locations were hierarchically clustered for

similarity matching between location sequences. We represent each

l ∈ L in its semantic vector representation Sem(l) ∈ RM+ and

employ the DIANA algorithm [18] with the Euclidean distance
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Figure 4: View of a clustered layer

metric on these semantic vectors to derive a hierarchically clustered

structure for all l ∈ L. The cut point of the hierarchy is decided by

the use of the Gap Statistic value [31]. LetH denote the set of all

layers in this hierarchically clustered structure between the optimal

cut point and the root. For any layer h ∈ H , let C(h) denote the set

of clusters formed at that layer. An example of a clustered layer is

shown in Figure 4.

Finally, we describe the construction of simU (·, ·). Let us de-

note by simU,C(·, ·, ·) and simU,L(·, ·, ·), two intermediate similar-

ity measures, that are de�ned as follows. Let C′ ∈ C(h) be a cluster

at layer h and let Pu,C′ ⊆ P denote the subset of products browsed

by useru ∈ U within locations l ∈ C′. If Pu,C′ and Pu′,C′ are both

nonempty sets for some u,u ′ ∈ U, then we de�ne the similarity

metric simU,C(u,u
′,C′) between users u and u ′ w.r.t. cluster C′ as

simU,C
(
u,u ′,C′

)
,

∑
p∈Pu,C′

∑
p′∈Pu′,C′

simP

(
p,p′

)
��Pu,C′ �� · ��Pu′,C′ �� . (5)

We let C′′(h) ,
{
Γ ∈ C(h)

�� Pu,Γ , ∅} ⋂{
Γ ∈ C(h)

�� Pu′,Γ , ∅}.

If C′′(h) is nonempty, we further de�ne the layer level similarity

metric simU,L(u,u
′,h) between users u and u ′ w.r.t. layer h ∈ H as

the average of all cluster level similarity metrics within that layer

simU,L
(
u,u ′,h

)
,

∑
C′∈C′′(h)

simU,C
(
u,u ′,C′

)
|C′′(h)|

, (6)

and in case C′′(h) = ∅, we set simU,L(u,u
′,h) = 0. A weighted sum

of the layer level similarities is used to de�ne the user similarity

based a�nity

simU

(
u,u ′

)
=

|H |∑
h=1

β(h) · simU,L
(
u,u ′,h

)
, (7)

where the weights β(h) are selected as in [15].

The user similarity based a�nity function AU(u,p, l) is now

de�ned as the weighted average

AU(u,p, l) ,
∑
u′∈U

(
simU (u,u

′)∑
u′′∈U

simU

(
u,u ′′

) ) · AI

(
u ′,p, l

)
. (8)

0.0
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Figure 5: Heatmap depicting the di�erence between Loca-
tion Sensitive Product A�nity distribution (over area of in-
terest) of the same user for two di�erent products

3.3 Semantic Location-Location Similarity
based A�nity

As discussed in Section 3.2, semantic similarity between locations

simL(·, ·) can be used to model similarity of preferences across

di�erent users simU (·, ·). Additionally, semantic location similar-

ity should be exploitable to infer similarity of preferences for the

same user across locations. We do so by extending the de�nition

of the Sem(·) to operate on grid squares д ∈ G (shown in Fig-

ure 2) and de�ning a function AS(u,p,д) ∈ [0, 1] over all triplets

(u,p,д) ∈ U × P × G that we term as the location semantics based
a�nity of user u towards product p at grid square д. Intuitively,

AS(u,p,д) helps in estimating a�nity values at 3-tuples (u,p, l)
where B(u,p, l) = 0 by utilizing information from 3-tuples (u,p, l ′)
where B(u,p, l ′) , 0.

Since locations in L are actually stay points (see Section 2.2),

the de�nitions of the location semantic function Sem(·) and the

semantic location similarity function simL(·, ·) can be extended

unchanged to operate on areas that are larger than a stay point,

e.g. Sem(д) can be computed for grid squares д ∈ G. For any grid

square д ∈ G, let t(д) ⊆ L′ denote the set of n locations in L′

that achieve the highest values for the partially de�ned semantic

similarity function simL(д, ·). We restrict t(д) to be a subset of L′

to smooth the a�nity estimate against local e�ects and we restrict

|t(д)| to not exceed n to bound the computational complexity. We

de�ne the location semantics based a�nity function as the weighted

average

AS(u,p,д) ,

∑
l ′∈t (д)

simL

(
д, l ′

)
· AU

(
u,p, l ′

)
+

∑
l ∈M(д)

AU(u,p, l)∑
l ′∈t (д) simL(д, l ′) + |M(д)|

.

(9)

3.4 Location Sensitive Product A�nity (LSPA)
We de�ne the vector valued LSPA function A(u,p) ∈ [0, 1] |G | for

each pair (u,p) ∈ U × P by collecting all values ofAS(u,p,д) over

д ∈ G into a vector. Figure 5 shows the heatmap of the di�erence

vectorA(u,p)−A(u,p′) overG for a particular useru in our dataset

who uses two di�erent products p and p′ and illustrates that the

LSPA function can vary signi�cantly.
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Algorithm 1 CreateUserSegments(G,U,A,p)

Output: UserSeд(p), Aavд(p)
Steps:
max_ch_val ← 0.0 . Holds max. CH-value obtained

k_optimal ← 0 . Holds k that gives max. CH-value

UserSeд(p) ← {} . user segments at k_optimal
for k ← 1 to |U| do

chk ,user_seд← K-Means(A,U,p,k)
if chk > max_ch_val then

max_ch_val ← chk
k_optimal ← k
UserSeд(p) ← user_seд

end if
end for

. Calculate average a�nity distribution for user segments

for user_seд ∈ UserSeд(p) do
for д ∈ G do

Aavд(p,user_seд,д) ←
∑
u∈user_seд A(u,p,д)
|user_seд |

end for
end for
returnUserSeд(p), Aavд(p)

4 GEO-FENCE DESIGN
4.1 User Segmentation
With the help of the a�nity distribution we can design geo-fences

for all users. But designing separate geo-fences for each and every

user would result in an unmanageably large set of geo-fences. Geo-

fencing is an expensive setup as it requires deploying, maintaining

and managing infrastructure to track devices at scale in real time.

On the other hand, we can do better than designing a single geo-

fence per product that potentially results in poor user experience

on account of mis-targeting, i.e. unnecessarily targeting users who

might not be interested in the product at that location. Thus, we

propose the idea of identifying small number of user segments and

designing geo-fences for each segment separately.

Algorithm 1 explains the approach that identi�es the user seg-

ments for a particular product p. We perform K-Means clustering

where each user is represented by LSPA vector A(u,p) for a prod-

uct p. We generate clusters using di�erent values of K and choose

the one that gives the maximum CH-value [7]. This gives us the set

of user segments UserSeд(p) for the product p and we design geo-

fences for each of these segments separately. Also, we compute the

average a�nity distribution for each segment, Aavд(p,user_seд),
which represents the location sensitive product a�nity for that seg-

ment. We getAavд(p) by collecting all values ofAavд(p,user_seд)
over UserSeд(p).

4.2 Geo-fence Design
The process of geo-fence design is implemented by the series of

steps given by Algorithm 2. For each user segment, we deploy the

strategy: select all grid squares from the average a�nity distribution

having a�nities above a certain threshold thresh, cluster nearby

squares and create a boundary around each of the clusters to get a

Algorithm2DesignGeofence
(
G,UserSeд(p),Aavд(p),p, thresh

)
Output: Geof ence(p)
Steps:
for user_seд ∈ UserSeд(p) do

. Find of grids having average a�nity greater than thresh
дrid_set ← {}
for д ∈ G do

if Aavд(p,user_seд,д) > thresh then
дrid_set ← дrid_set

⋃
{д}

end if
end for

дrid_clusters ← DBSCAN(дrid_set) . DBSCAN Clustering

Geof ence(p,user_seд) ← {}
for clust ∈ дrid_clusters do
. Create boundary around each cluster of grids to form

geo-fence

дeo_f ence ← α-hull(cluster )
Geof ence(p,user_seд) ←

Geof ence(p,user_seд)
⋃
дeo_f ence

end for
end for
return Geof ence(p)

group of geo-fences. Now we discuss the clustering and boundary

creation steps in detail.

4.2.1 Clustering Nearby High A�inity Locations. Clustering of

grid squares having high a�nity (greater than thresh) ensures that

the area covered by a geo-fence is sizable. This allows the geo-

fence to be actually useful in achieving the desired purpose i.e. help

retailer target potential customers. Also, since we don’t put any

restriction on the size and shape of geo-fence, so the DBSCAN [11]

algorithm is used for clustering which has the ability to �nd arbi-

trarily shaped clusters and is robust to outliers.

4.2.2 Constructing Geo-fence boundary. The DBSCAN cluster-

ing gives clusters of grid squares as output from which the geo-

fences need to be designed. Cluster polygonization can give us

closed polygons for each of the clusters and each of these polygons,

enclosing a set of grid squares, can be regarded as a geo-fence for

the users of the segment to which the clusters correspond. There

are many cluster boundary detection and polygon construction

algorithms proposed [10, 14] and any one of them can be used

depending on required properties. We use the α-hull approach [10]

with α = 0.02 in Algorithm 2. We chose this over other approaches

since it constructs tighter boundaries enclosing each cluster which

can be controlled by the parameter α . Thus, we get a group of geo-

fences,Geof ence(p), inside the area of interest for all user segments

for the product p ∈ P, in an automated manner. The geo-fences

that we obtain are referred to as Location Sensitive Product A�nity
based Geo-fences (LSPAG).
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5 EXPERIMENTAL EVALUATION
5.1 Dataset Description and Preparation
For the purpose of experimental study, we consider the anonymized

usage logs recorded from installed mobile applications of some e-

commerce retailers. The logs were collected with strict adherence

to location privacy policies [9, 22] and spanned a period of 15

days and represented approximately 4000 users. The logs were pre-

processed with the stay point detection algorithm from [15], as

per the description in Section 2.2, to associate GPS coordinates for

each transaction with a stay point. Next, we split this dataset into

two parts for training and testing the solution framework shown

in Figure 3.

(1) The �rst 10 days of the usage logs are used as the training set

which consist of approximately 40, 000 browsing transactions

for 500 distinct products from 4000 users. In terms of taxon-

omy, the 500 distinct products are assigned to 3 categories and

64 sub-categories with each product being assigned its own

unique vertical. The physical area of interest for geo-fence de-

sign (i.e. area spanned by the set of grid squares G) was set to a

20km × 20km area of a city as dictated by the training set. The

training set is fed to the a�nity modeling and the geo-fence

design modules as indicated in Figure 3 which respectively

results in the computation of the LSPA distributions and the

subsequent generation of a set of geo-fences.

(2) The next 5 days of the usage logs are used as the test set to

evaluate the geo-fences generated in the training phase. Ap-

proximately 800 users had browsing activity in both the training

and test datasets within the area of interest. Only 5 products

had geo-fence based o�ers from retailers during the period over

which the test dataset was collected.

5.2 Parameters for LSPA based Geo-fencing
The following parameter values were �xed throughout all our ex-

periments. The weights wC, wSC and wV in (2) are set in the ratio

of 1 : 2 : 4 in order to give lower weights to similarity at higher

taxonomic level (category is the highest level) as they are more

generic. After performing hierarchical clustering for user similarity

based a�nity, we get |H | = 10 layers in the hierarchical structure.

The weights β(h) for h ∈ H were set as in [15], i.e.

β(h) =
2
h−1∑ |H |

h=1 2
h−1
. (10)

5.3 Validation Methodology
Here, we delineate the validation methodology which is used to

measure the quality of our designed geo-fences against those gen-

erated by the baselines de�ned later in Section 5.4. Our approach

designs geo-fences where it estimates a higher a�nity for the users

towards a product for which the marketer wants to send out o�ers.

For validation of the model, we need to evaluate that, if an o�er is

sent to a user inside a geo-fence, whether the user responds to the

o�er by opening it and potentially, end up purchasing the product.

Due to very limited number of o�ers in the test set, we also con-

sider the browsing transactions from the usage logs within the area

of interest. This is based on the fact that browsing for a product

indicates the user’s interest in it and if an o�er would have been

sent for the same, the user would have responded to it with a high

probability.

We compute the precision Prec(seд, t ,p), the recall Rec(seд, t ,p)
and the F1–score F1(seд, t ,p) to evaluate the quality of the geo-

fences designed for a single user segment seд with respect to a

particular product p ∈ P at a given threshold t for selecting grid

points in geo-fence design. The number of true positives (TP) consist

of all those entries in the test set where a user browsed the product

at a location that is inside the geo-fences designed by our model.

If this location is not inside any geo-fence, then it gets counted

towards false negative (FN). Similarly, all other locations recorded

in the test set, for the user, that are inside the geo-fences but where

the user did not browse the product are regarded as false positive

(FP). The metrics can be computed as

Prec(seд, t ,p) =
#TP

#TP + #FP

(11)

Rec(seд, t ,p) =
#TP

#TP + #FN

(12)

F1(seд, t ,p) =
2 ∗ Prec(seд, t ,p) ∗ Rec(seд, t ,p)

Prec(seд, t ,p) + Rec(seд, t ,p)
. (13)

The threshold t corresponds to the thresh parameter in Algorithm 2

for geo-fence design and can be varied to get di�erent geo-fences

for a segment. For each segment, we take one value of precision,

recall and F1–score corresponding to the threshold that results in

maximum F1–score.

For ease of reporting and analysis, these precision and recall

values are �rst averaged over all segments for a given product. Fur-

ther, we take the average of the precision and recall obtained for

each product to get single precision and recall value for compar-

ing against baselines in Section 5.5. The overall F1–score is then

computed from these averaged precision and recall values.

5.4 Baselines
This section gives the details of the various baselines that we have

compare against our algorithm. All the baselines design geo-fences

using di�erent approaches. The choice of these baselines is intended

to substantiate the claims made in the introduction.

5.4.1 Geo-fences designed by Domain Experts (DEG). At present,

e-commerce retailers employ marketers to manually design geo-

fences to target users with o�ers on certain products at certain

locations. These marketers are considered as domain experts and we

will refer to their design as the DEG method. In our dataset, all such

geo-fences are circular and can be represented by

〈
cl t , clд , r ,p

〉
tuples, where the representation indicates a geo-fence for product

p centered at coordinates

(
cl t , clд

)
with radius r .

5.4.2 LSPA based Geo-fencing without User Segmentation (LSPAG
w/o US). We devise a variation of our approach to investigate the

utility of creating user segments from the a�nity distributions and

designing separate geo-fences for each segment. For this baseline,

we use the LSPA distributions from Section 3.3 and directly design

geo-fences by assuming that all users belong to the same segment.

5.4.3 Geo-fencing using Intrinsic A�inity (IAG). This baseline

employs the intrinsic a�nity function AI(·, ·, ·) from Section 3.1 to

determine the a�nity distribution over G. Thus, the a�nity value
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on the grid square д ∈ G for any (u,p) ∈ U × P is

AIAG(u,p,д) =


1

|M(д)|

∑
l ∈M(д)

AI(u,p, l), M(д) , ∅,

0, M(д) = ∅,

(14)

Comparing our approach with this baseline shows that computing

the user and location semantic similarity based a�nities on top of

the intrinsic a�nity is important for obtaining better geo-fences.

5.4.4 Geo-fencing using User Similarity based A�inity (USAG).
As the name suggests, this baseline uses theAU(·, ·, ·) function from

Section 3.2 to generate the a�nity distribution for geo-fencing. We

get the a�nity value AUSAG(u,p,д) for any (u,p,д) ∈ U × P ×
G from the l.h.s. in (14) by replacing AI(u,p, l) with AU(u,p, l)
on the r.h.s. Experiments with this baseline suggest a progressive

improvement in the quality of the generated geo-fences when all

the three types of a�nities mentioned in Section 3 are incorporated.

5.4.5 Collaborative filtering based Geo-fencing (CFG). This base-

line is included to demonstrate that owing to extreme sparsity of

the raw data after stay point detection, collaborative �ltering based

a�nity estimates do not lead to high quality geo-fences. First, for a

given p ∈ P, we construct a user-grid matrix B
grid
∈ [0, 1] |U |×|G |

according to the equations

B
grid
(u,p,д) =


1

|M(д)|

∑
l ∈M(д)

B(u,p, l), M(д) , ∅,

0, M(д) = ∅,

(15)

B
grid
(u,д) =

B
grid
(u,p,д)∑

д′∈G

B
grid

(
u,p,д′

) (16)

Next, we use the popular k-Nearest Neighbor collaborative �ltering

algorithm [26] w.r.t. the user vectors and with the widely accepted

value of k = 50 [6]. We use the resultant |G| dimensional vectors

for each user as an estimate of his a�nity distribution over G and

utilize it for subsequent user segmentation and geo-fence design as

per Section 4.

5.4.6 Geo-fences based on Intrinsic A�inity and Collaborative
Filtering (IA-CFG). This baseline is derived a combination of IAG

and CFG baselines. For this baseline, given a product p ∈ P, the

user-grid matrix B
grid
∈ [0, 1] |U |×|G | is obtained from (14) by

setting B
grid
(u,д) = AIAG(u,p,д). Then, analogous to Section 5.4.5,

the k-Nearest Neighbor collaborative �ltering approach is used on

B
grid

to get a�nity distribution estimates and subsequently design

geo-fences.

5.4.7 Matrix Factorization based Geo-fences (MFG). This is an-

other collaborative �ltering based baseline but using the popular

matrix factorization method [13]. For any product p ∈ P, we de-

�ne the user-grid matrix B
grid
∈ [0, 1] |U |×|G | using (15) and (16).

Matrix factorization method is then applied to B
grid

while treating

zero entries as missing elements to be estimated. The rows of the

resultant estimate of B
grid

are used as a�nity distribution estimates

overG and utilized for subsequent user segmentation and geo-fence

design as per Section 4. We have used the basic matrix factorization

Table 2: Precision, Recall and F1-Score values for our ap-
proach (LSPAG) and baselines mentioned in Section 5.4

Method Precision (%) Recall (%) F1–Score (%)

LSPAG 18.32 38.80 24.89
DEG 10.00 1.00 1.81

LSPAG w/o US 11.93 59.49 19.87

IAG 1.11 2.22 1.48

USAG 16.89 20.54 18.54

CFG 1.55 2.05 1.77

IA-CFG 0.00 0.00 0.00

MFG 15.07 22.83 18.16

IA-MFG 15.31 25.60 19.16

method in [13] with number of latent factors set to 30, the learning

rate set to 0.01, and the regularization factor set to 0.02.

5.4.8 Geo-fences based on Intrinsic A�inity and Matrix Factoriza-
tion (IA-MFG). This baseline is exactly same as the IA-CFG method

up to the de�nition of the user-grid matrix B
grid
∈ [0, 1] |U |×|G | .

Thereafter, instead of using the k-Nearest Neighbor algorithm, the

matrix factorization approach is applied to B
grid

assuming that zero

entries in B
grid

are missing elements to be estimated. The parame-

ters used for the matrix factorization are same as those in the MFG

baseline. Once the estimate for B
grid

is obtained, it is used as in the

MFG baseline to design geo-fences.

5.5 Results
Table 2 shows the precision, recall and F1–score values for our

method (LSPAG) and the various baselines discussed in the previous

section. We now analyze each of the comparisons in detail and

justify the claims made in Section 1.

5.5.1 Comparison against standard industry practice. The geo-

fences designed by domain experts (DEG), although compare well

in precision, performs poorly with respect to our approach on all

three metrics. This is because these geo-fences target only a small

number of interested users for a particular product. A possible

explanation behind this can be that, since these experts manually

analyze the usage patterns inside the area of interest, the complexity

of the task becomes harder as the size of area and the number of

users increases. In contrast, our automated approach to design geo-

fences is also able to leverage usage patterns from outside the area

of interest and employs location semantics to infer the interest of

a user towards the product at various locations inside the area of

interest. As a result of improved a�nity estimates, the geo-fences

designed by our approach are able to target a larger number of users

actually interested in the product and hence, performs signi�cantly

better than the standard industry practice at present.

5.5.2 E�ect of user segmentation. The comparison with the base-

line LSPAG w/o US (Section 5.4.2) is an interesting one. LSPAG w/o

US gives a better recall than LSPAG but at the cost of about 35%

lower precision (compared to LSPAG, which is signi�cant) and F1–

score. Di�erent users can be interested in the same product but at

di�erent locations, a fact that gets ignored when we consider all
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users in the same segment. Thus, LSPAG w/o US attempts to cover

all these di�erent types of areas in a single set of geo-fences and

hence, targets a broader user base. Also, for some users, it targets

them at more locations than, where they are actually interested

in the product. We believe that this undesirable as it can result in

user attrition, i.e. users uninstalling the retailer’s mobile application

after getting irritated by o�ers at the wrong location. On the other

hand, user segmentation helps in avoiding such scenarios by per-

sonalizing the geo-fences for a user segment and targets users only

in those areas where they are actually interested in the product.

5.5.3 Performance of various proposed a�inities. We proposed

three a�nities (Sections 3.1, 3.2, 3.3) which solve the sparsity prob-

lem in the dimension of product, user and location respectively.

The comparison with baselines IAG (Section 5.4.3) and USAG (Sec-

tion 5.4.4) shows how important it is to solve sparsity problem

in all the three dimensions. If we see the performance of IAG, it

clearly doesn’t do well on precision, recall and F1–score. Compar-

ing USAG with LSPAG (our proposed approach), we can see that

although the increase in precision is small but recall increases in

our method by about 90% with respect to USAG which is quite sig-

ni�cant. This validates our claim that location sensitivity modeling

improves the quality of geo-fences and in that, location semantics

based latent sensitivity is extremely important. We also learn that

the sparsity problem must be handled in all the three dimensions

for the geo-fences to give a good performance.

5.5.4 Handling Sparsity of Data. Working with extremely sparse

data is one of the strengths of our approach. After each of the

a�nity computations mentioned in Section 3, we observed that

there was a signi�cant increase in the number of a�nity values

for user-grid square pairs for a particular product. We believe this

helps in improving the performance of our approach which can be

seen from the progression of performance from IAG to USPAG and

ultimately, to LSPAG.

We also compare with other models that handle sparsity in data

- Collaborative Filtering and Matrix Factorization. As one can see

from the Table 2, each of the four baselines CFG, IAG-CFG, MFG

and IAG-MFG perform poorly when compared to our LSPAG ap-

proach. A possible reason behind this can be that such approaches

generally attempt to estimate the unknown values based on only

the known values in the matrix. First of all in our setting, the per-

centage of such known values to start is quite low (even less than

1% which is the case in Net�ix recommendations). Also, such meth-

ods cannot incorporate inherent relationships like we do in case of

locations by using location semantics or our notion of user similar-

ity (Section 3.2). Thus, we believe that our approach of handling

sparsity by using pair-wise product-product, user-user, and seman-

tic location-location similarities proves e�ective in improving the

a�nity estimation. As a result, our geo-fences are able to target

actually interested with more accuracy.

5.5.5 Variation with number of semantically similar locations
chosen. We also study the e�ect of variable n, which is the number

of semantically similar locations in (9), on the overall process of

geo-fencing using the three metrics. We see in Table 3 that with

increase in n, there is an increase in values of all the three metrics.

This is expected because the estimation improves as we include

Table 3: Variation of precision, recall and F1–score with
change in n, the number of semantically similar locations
chosen in equation (9)

Metric n = 5 n = 10 n = 20

Precision (%) 18.08 18.32 20.70

Recall (%) 37.38 38.80 40.47

F1–Score (%) 24.37 24.89 27.39

a�nities from more number of similar locations. The computation

time is however, a factor of O(n2) and selection of n can be made

based on the desired computational time.

6 RELATEDWORK
The research community garnered interest in the area of geo-

fencing in the last 10-15 years and most of the early work [16, 37]

focused on energy e�cient solutions to detect whether the cur-

rent location of the user lies inside the speci�ed geo-fence. Few

works have emerged till date which concentrate on how the geo-

fences should actually be designed. [23, 30] professed the bene�ts of

geo-fences being aligned with users’ interests. Some works [4, 19]

present a simple context based geo-fencing systems in which the

retailer could set speci�c rules for various types of contexts and

whenever the user’s context matched with any of the rules, the

message corresponding to the rule was triggered. [25] present a

framework for Trade Area Analysis (TAA) in which they advocate

design of a data-driven geo-fence based on users’ check-in data.

Our approach follows a similar framework by replacing user check-

ins with user a�nity for geo-fence design. Further, we present an

evaluation strategy to test its success. To the best of our knowl-

edge, there are no publications or industry practices that design

geo-fences using the concept of user a�nities.

Another �eld of related work is the research using location re-

lated data from mobile devices. The main themes of these works

are: giving venue recommendations at a location [3, 34], predicting

the next location of the user [1, 17, 20, 21] or recommending friends

based on location histories [2, 35, 36]. These works reinforce the

fact that a user’s interest is re�ected in the type of locations but

since they are based on Foursquare check-in data, they cannot be

applied in the context of our problem directly. However, works

estimating user similarity based on location history [15, 33] were

relevant to our problem and in�uence parts of our approach.

Estimating users’ interest towards various products is a problem

that has been explored in the area of recommender systems. Many

state-of-the-art recommendation algorithms have been proposed

like collaborative �ltering [26–28], content based recommenda-

tion [24] and their hybrids [5]. Some of the algorithms are quite

robust in handling sparse data but we show in our experiments

that our dataset su�ers from extreme sparsity which limits the

direct application of these techniques and as a result, the baselines

in�uenced from these works perform poorly with respect to our

approach. Another reason is that such methods cannot leverage

location semantics to account for similarity of locations and infer

a�nities at locations where no activity has taken place.
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7 CONCLUSION
The paper presents a novel end-to-end system to design smart geo-

fences automatically that takes into account the variation in user

interest with respect to location, towards a product. In light of

extremely sparse data, we utilize product-product, user-user and

semantic location-location similarities to estimate this location sen-

sitive product a�nity (LSPA) for a user. Based on these a�nities for

a set of users, we then identify segments of similar users and design

geo-fences for each segment separately. Thus, our system generates

personalized geo-fences for each user segment automatically. We

evaluate our approach on a real world dataset and show that nei-

ther the standard industry practice of geo-fencing nor the popular

collaborative �ltering algorithms perform well on the metrics of

precision, recall and F1–score. We also justi�ed the choice of each

step that we propose by comparing against a�nities computed by

partial similarity measures and unsegmented user base. We believe

that such a system, if implemented in the industry, will lead to

better mobile marketing experience via geo-fencing. Modeling tem-

poral variations in a�nity and dwell-times are interesting avenues

for further research.
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